Generalized Köthe-Toeplitz Duals of Double Difference Sequence Spaces Defined by Orlicz Functions

Naveen Kumar Srivastava

Department of Mathematics St. Andrew's College, Gorakhpur, U.P.

Abstract

In this paper we define some difference sequence spaces and its sub-spaces using an Orlicz function and find their generalized Köthe-Toeplitz duals (I duals).

Key words: Difference sequence spaces, Orlicz function, Generalized Köthe-Toeplitz Duals

Introduction

Throughout this paper \mathbb{P} , λ_{∞} , λ_1 , c_1 and c_0 denotes the spaces of all, bounded, absolutely summable, convergent and null sequences $x = (x_k)$ with complex terms respectively. The notion of difference sequence space was introduced by Kizmaz [6], who studied the difference sequence spaces λ_{∞} (Δ), c(Δ) and c_0 (Δ). The notion was further generalized by Et. M. and Colak [10] by introducing the spaces λ_{∞} (Δ^m), c(Δ^m) and c_0 (Δ^m).

Let m be a non-negative integers then for Z a given sequence space, we have

$$\mathsf{Z}(\Delta^m) = \{\mathsf{x} = (\mathsf{x}_k) \in \mathbb{P} : (\Delta^m_{\mathsf{x}_k}) \in \mathsf{Z}\}$$

where

$$\Delta_x^m = (\Delta^m x_k) = (\Delta^{m-1} x_k - (\Delta^{m-1} \Delta^{m-1} x_{k+1})) \text{ and } \Delta^0 x_k = (x_k) \text{ for all } k \text{ PPN, which } x_k = (x_k) \text{ for all } x$$

is equivalent to the following binomial representation

$$\Delta^m \mathbf{x}_k = \sum_{j=0}^m (-1)^j \mathbf{x}_{k+j}.$$

After then Et. M. and Esi. A. [11] introduced the spaces λ_{∞} (Δ_v^m), c(Δ_v^m) and c₀ (Δ_v^m).

Let $v = (v_k)$ be any fixed sequence of non-zero complex number and m be a positive integer then for Z a given sequence space, we have

$$\begin{aligned} \mathsf{Z}(\Delta^m_{\mathrm{V}}) &= \{\mathsf{x} = (\mathsf{x}_k) \, \mathbb{P} : (\Delta^m \, \mathsf{v}_k \mathsf{x}_k) \, \mathbb{P} \, \mathsf{Z} \} \\ \text{where } \Delta^m_{\mathrm{V}} \, \mathsf{x} = (\Delta^m \, \mathsf{v}_k \mathsf{x}_k) = (\Delta^{m-1} \, \mathsf{v}_k \mathsf{x}_k \, \mathbb{P} \, \Delta^{m-1} \, \mathsf{v}_{k+1} \mathsf{x}_{k+1}), \text{ for all } \mathsf{k} \, \mathbb{P} \, \mathsf{N} \text{ and so that} \\ \Delta^m_{\mathrm{V}} \, \mathsf{x}_k &= \sum_{q=0}^m (-1)^j \, \binom{m}{j} \, \mathsf{v}_{k+j} \mathsf{x}_{k+j}. \end{aligned}$$

Taking v_k = (1, 1, ...), we get the spaces λ_{∞} (Δ^m), c(Δ^m) and c₀(Δ^m) introduced and studied by Et. and Colak [10].

An Orlicz function is a function $M : [0,\infty) \mathbb{P}[0,\infty)$, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \mathbb{P}\infty$ as $x \mathbb{P}\infty$.

An Orlicz function M is said to be Δ_2 –condition for all values of u, if these exists a constant K>0, such that

M(2u) < KM(u), where $u \ge 0$.

The Δ_2 –condition is equivalent to M(u) $\leq K\lambda M(u)$, for all values of u and for $\lambda > 1$.

An Orlicz function M can always be represented in the following integral form :

$$M(x) = \int_{0}^{x} p(t)dt$$

where p, known as Kernal of M, is right differentiable for $t \ge 0$, p(0) = 0, p(t) > 0 for t > 0, p is nondecreasing and $p(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Consider the Kernel p(t) associated with the Orlicz function M(t), and let

$$Q(s) = \sup\{t : p(t) \le s\}$$

The q possesses the same properties as the function p. Suppose now

$$\mathbb{P}(\mathbf{x}) = \int_{0}^{\mathbf{X}} q(\mathbf{s}) d\mathbf{s}.$$

Then $\ensuremath{\mathbbmath$\mathbbmath$

Now we state the following results which can be found in [8].

Let M and I are mutually complementary Orlicz functions. Then we have (Young's inequality)

(i) For $x, y \ge 0, xy \le M(x) + \mathbb{P}(y)$

Also, we have

(ii) $M(\mathbb{P}x) < \mathbb{P}M(x)$ for all $x \ge 0$ and \mathbb{P} with $0 < \mathbb{P} < 1$.

Lindestrauss and Tzafriri [8] used the Orlicz function and introduced the sequence space $\lambda_{\mathbf{M}}$ as follows :

$$\lambda_{\mathbf{M}} = \{ \mathbf{x} = (\mathbf{x}_k) \mathbb{PP} \mathbf{w} : \sum_{k=1}^{\infty} \mathbf{M} \cdot \left(\frac{|\mathbf{x}_k|}{\rho} \right) < \infty \text{ for some } \mathbb{P} > 0 \}$$

They proved that $\boldsymbol{\lambda}_M$ is a Banach space normed by

$$|\,|x_k|\,|=\text{inf}\{\mathbb{P}>0:\,\sum_{k=1}^\infty M.\left(\frac{|\,x_k\,|}{\rho}\right)\,\leq\,1\}.$$

A norm ||.|| on a vector space X is said to be equivalent to a norm $||.||_0$ on X if there are positive number A and B such that for all x \square X, we have

 $A||x||_{0} \leq ||x|| \leq B||x||_{0}.$

This concept is motivated be the fact that equivalent norm on X define the same topology for X.

An isomorphism of a normed space X onto a normed space Y is a bijective linear operator $T : X \rightarrow Y$ which preserves the norm, i.e. for all x $\mathbb{ZZ}X$,

 $||T_x|| = ||x||$. (Hence T is isometric)

X is then called isomorphic with Y, X and Y are called isomorphic normed spaces.

2. Definitions and Notations

Let m, n be a positive integer. The we can have the following sequence spaces for an Orlicz function M as

$$c_{0}^{2}(\mathsf{M},\mathsf{v},\mathbb{P},\Delta_{n}^{m}) = \{\mathsf{x} = (\mathsf{x}_{ij}): \lim_{i+j\to\infty} \mathsf{M}\left(\frac{|\Delta_{n}^{m}\mathsf{v}_{ij}\lambda_{ij}\mathsf{x}_{ij}|}{\rho}\right) = \mathsf{0}, \text{ for some } \mathbb{P} > \mathsf{0}\}$$

$$c^{2}(\mathsf{M},\mathsf{v},\mathbb{P},\Delta_{n}^{m}) = \{\mathsf{x} = (\mathsf{x}_{ij}): \lim_{i+j\to\infty} \mathsf{M}\left(\frac{|\Delta_{n}^{m}\mathsf{v}_{ij}\lambda_{ij}\mathsf{x}_{ij}| - L_{1}}{\rho}\right) = \mathsf{0}, \text{ for some complex number L and}$$

$$\mathbb{P} > \mathsf{0}\}.$$

$$\lambda_{\infty}^{2} \left(\mathsf{M},\mathsf{v},\mathbb{P},\ \Delta_{n}^{m}\right) = \{\mathsf{x} = (\mathsf{x}_{ij}): \sup_{i,j}\mathsf{M} \left(\frac{|\Delta_{n}^{m} v_{ij}\lambda_{ij} x_{ij}|}{\rho}\right) < \infty \text{, for some } \mathbb{P} > 0\},\$$

where $\Delta_n^m v_{ij} x_{ij} = \Delta_{n-1}^{m-1} v_{ij} x_{ij}$? $\Delta^{m-1} v_{i+1, j+1} x_{i+1, j+1}$, $\Delta_n^m v_{ij} x_{ij} = \Delta_{n-1}^{m-1} v_{ij} x_{ij}$ $\sum_{ 2 \leq i+j \leq m+n} \ (-1)^{i'+j'} \ v_{i+i',\,j+j'} \, x_{i+i',\,j+j'} \\$

It is obvious that

$$c_0^2(\mathsf{M},\mathsf{v},\mathbb{P},\,\Delta_n^m) \subset \mathsf{c}^2(\mathsf{M},\mathsf{v},\mathbb{P},\,\Delta^m) \subset \lambda_\infty^2(\mathsf{M},\mathsf{v},\mathbb{P},\,\Delta_n^m). \tag{2.1}$$

Several authors have studied different algebraic and topological properties of such spaces. In this paper our main aim is to determine generalized Köthe-Toeplitz and Köthe-Toeplitz duals of such spaces.

Throughout the paper X will denote one of the sequence spaces c_0, c and λ_{∞} . The sequence spaces X(M, v, $\mathbb{P}, \ \Delta_n^m$) are Banach spaces normed by

$$\|\mathbf{x}\|_{\Delta_{n}^{m}} = \sum_{2 \leq k+\lambda \leq m+n} |\mathbf{v}_{k\lambda} \mathbf{x}_{k\lambda}| + \inf\{\mathbb{P} > 0: \sup_{i,j} \mathsf{M}\left(\frac{|\Delta_{n}^{m} \mathbf{v}_{ij} \lambda_{ij} \mathbf{x}_{ij}|}{\rho}\right) \leq 1\}\mathsf{L}$$
(2.2)

Now, we take

$$\Delta_n^m \mathbf{v}_{ij} \underline{\mathbb{B}}_{ij} \mathbf{x}_{ij} = \sum_{2 \le i+j \le m+n} (-1)^{i'+j'} \binom{m}{i'} \binom{n}{j'}_{\mathbf{x}_{i-i',j-j'}}^{\mathbf{v}_{m-i',n-j'\lambda_{i-i',j-j'}}}$$

It is trivial ($\Delta_n^m v_{ij} x_{ij}$) $\mathbb{P} X(m)$ if anf only if ($\Delta_n^m v_{ij} x_{ij}$) $\mathbb{P} X(M)$. Now for $x \mathbb{P} X(M, v, \Delta_n^m v_{ij} x_{ij}) \mathbb{P} X(M)$), we define

$$\|\mathbf{x}\|_{\Delta_{\mathbf{n}}^{(m)}} = \inf\{\mathbb{P} > \mathbf{0} : \sup_{i,j} \mathbf{M}\left(\frac{|\Delta_{\mathbf{n}}^{m} \mathbf{v}_{ij}\lambda_{ij}\mathbf{x}_{ij}|}{\rho}\right) \le 1\}$$

It can be shown that X(M, v, \mathbb{P} , Δ_n^m) is a BK-space under the norm $||x||_{\Delta_n^m}$ and the norms $||x||_{\Delta_n^m}$ and $||x||_{\Delta_n^m}$ are equivalent. Obviously Δ_n^m : X(M, v, \mathbb{P} , $\Delta^{(m)}$) \rightarrow X(M) denoted by $\Delta_{(n)}^{(m)}$ (x)=y=(Δ_n^m) $v_{ij}\mathbb{P}_{ij}x_{ij}$), is isometric isomorphism. Hence c_0^2 (M, v, \mathbb{P}, Δ_n^m), c^2 (M, v, \mathbb{P}, Δ_n^m) and λ_{∞}^2 (M) are isometrically isomorphic to c_0^2 (M), c^2 (M) and λ_{∞}^2 (M) respectively. From abstract point of view X(M, v, $\mathbb{P},\ \Delta_n^m$) is identical to X(M).

Now we define the spaces \overline{c}_0^2 (M, v, \mathbb{P} , Δ_n^m) is subspace of c_0^2 (M, v, \mathbb{P} , Δ_n^m) consisting of those x in c_0^2 (M, v, \mathbb{P} , Δ_n^m) such that $\lim_{i+j\to\infty} \mathsf{M} \frac{\left(\Delta_n^m v_{ij}\lambda_{ij} x_{ij}\right)}{d} = 0$ for each d > 0.

Similarly we define \overline{c}^2 (M, v, \mathbb{P} , Δ_n^m) and $\overline{\lambda}_{\infty}^2$ (M, v, \mathbb{P} , Δ_n^m) as subspace of \overline{c}^2 (M, v, \mathbb{P} , Δ_n^m) and $\overline{\lambda}_{\infty}^2$ (M, v, \mathbb{P} , Δ_n^m) respectively. The topology of \overline{X} (M, v, \mathbb{P} , Δ_n^m) is the one it inherits from $\|\cdot\|_{\Delta_n^m}$.

It is obvious that

 $\bar{c}_0^2\,(\mathsf{M},\mathsf{v},\mathbb{P},\,\Delta_n^m\,)\subset\ \bar{c}^2\,(\mathsf{M},\mathsf{v},\mathbb{P},\,\Delta_n^m\,)\subset\ \bar{\lambda}_\infty^2\,(\mathsf{m},\mathsf{v},\mathbb{P},\Delta_n^m\,).$

Also as above we can show that \overline{X} (M, v, \mathbb{P} , Δ_n^m) are isometrically isomorphic to \overline{X} (M).

Moreover X²(M, v, \mathbb{P} , Δ_n^m) \subseteq X²(M, v, \mathbb{P} , Δ_{n+1}^{m+1}) and \overline{X}^2 (M, v, \mathbb{P} , Δ_n^m) \subseteq X²(M, v, \mathbb{P} , Δ_{n+1}^{m+1}) which can be shown by repeated application of the following inequality

$$\mathsf{M}\left(\frac{|\Delta_n^m v_{ij}\lambda_{ij} x_{ij}|}{2\rho}\right) \leq \frac{1}{2} \mathsf{M}\left(\frac{|\Delta_{n-1}^{m-1} v_{ij}\lambda_{ij} x_{ij}|}{\rho}\right) + \frac{M}{2} \left(\frac{|\Delta_{n-1}^{m-1} v_{i+1,j+1}\lambda_{i+1,j+1} x_{i+1,j+1}|}{\rho}\right)$$

3. Generalized Köthe-Toeplitz Duals

In this section our main aim is to determine \mathbb{P} -dual and \mathbb{P} -dual of the sequence spaces c_0^2 (M, v, \mathbb{P} , Δ_n^m), c^2 (M, v, \mathbb{P} , Δ_n^m), λ_{∞}^2 (M, v, \mathbb{P} , Δ_n^m), \overline{c}_0^2 (M, v, \mathbb{P} , Δ_n^m), \overline{c}^2 (M, v, \mathbb{P} , Δ^m) and $\overline{\lambda}_{\infty}^2$ (M, v, \mathbb{P} , Δ_n^m).

Definition (3.1). Let E be a sequence space and $r \ge 1$. Then the \mathbb{P} -dual of E is defined as

$$\mathsf{E}^{\mathbb{P}} = \{ \mathsf{a} = (\mathsf{a}_k) : \sum_{k=1}^{\infty} |\mathsf{a}_k \mathsf{r}_k|^r < \infty \text{, for all } \mathsf{x} = (\mathsf{x}_k) \mathbb{P} \mathsf{E} \}.$$

If we take r = 1, then we have Köthe-Toeplitz duals of E, i.e.,

$$E^{\mathbb{Z}} = \{a = (a_k) : \sum_{k=1}^{\infty} |a_k r_k| < \infty, \text{ for all } x = (x_k) \mathbb{P}E\}.$$

If $E \subset E$, then $E^z \subset E^z$ for $z = \mathbb{P}$.

Lemma (3.2). ([3]). Let m be a positive integer. Then there exists positive constants c_1 and c_2 such that

$$\begin{split} & \mathsf{c_1}(\mathsf{i+j})^{\mathsf{m+n}} \leq \binom{m+i}{i} \binom{m+j}{j} \leq \mathsf{c_2}(\mathsf{i+j})^{\mathsf{m+n}}, \quad \mathsf{i+j=0, 1, 2, ...} \\ & \text{Lemma (3.3). } x \mathbb{P} \, \lambda_\infty^2 \, (\mathsf{M}, \mathsf{v}, \mathbb{P}, \Delta_n^m \,) \text{ implies that } \sup_{i, j} \mathsf{M} \left(\frac{|(\mathsf{i+j})^{-1} \Delta_{n-1}^{m-1} \mathsf{v}_{ij} \lambda_{ij} \mathsf{x}_{ij}|}{\rho} \right) < \infty \, , \, \text{for some } \mathbb{P} > 1 \\ \end{split}$$

0.

$$\begin{split} & \text{Proof. Let } x \mathbb{P} \lambda_{\infty}^{2} \text{ (M, v, \mathbb{P}, Δ_{n}^{m}), then} \\ & \sup_{i,j} \mathsf{M} \Biggl(\frac{|\Delta_{n}^{m} v_{ij} \lambda_{ij} x_{ij}|}{\rho} \Biggr) < \infty \text{, for some \mathbb{P} > 0.} \end{split}$$

Then there exists a U > 0, such that

$$\mathsf{M}\left(\frac{|\Delta_n^m v_{ij}\lambda_{ij} x_{ij}|}{\rho}\right) < \mathsf{U}, \text{ for all } i,j \ \mathbb{P} \ \mathsf{N}.$$

Taking $\mathbb{P} = (i+j)\mathbb{P}$, i, j > 1 being fixed number, we have

Proof. (i) Proof follows from Lemma (3.4).

- (ii) Combining the Lemma (3.4) and part (i).
- (iii) Proof follows from part (i).

Remark 1. Similar results as in Lemma (3.5) hold for $\overline{\lambda}_{\infty}^2$ (M, v, \mathbb{P} , Δ_n^m) also, where the statement "for some $\mathbb{P} > 0$ ".

Theorem (3.6). Let M be an Orlicz function. Then

(i)
$$[c_0^2(M, v, \mathbb{P}, \Delta_n^m)] = [c^2(M, v, \mathbb{P}, \Delta_n^m)]\mathbb{P} = [\lambda_{\infty}^2(M, v, \mathbb{P}, \Delta_n^m)] = u_1$$
 (3.1)
(ii) ${}^2u_1^{\eta} = {}^2u_2$. (3.2)
 $u_1^2 = \{a = (a_{ij}): \sum |(i+j)^{m+n}v_{ij}\mathbb{P}_{ij}a_{ij}|^{r+s} < \infty \}$

where $u_1^2 = \{a = (a_{ij}) : \sum_{2 \le i+j \le \infty} |(i+j)^{m+n} v_{ij} \mathbb{Z}_{ij} a_{ij}|^{r+s} < \infty$

$$\begin{split} u_{2}^{2} &= \{ \mathbf{a} = (\mathbf{a}_{ij}) : \sup_{i, j} |(i+j)^{\mathbb{E}(m+n)} \mathbf{v}_{ij} \mathbb{E}_{ij} \mathbf{a}_{ij} |^{r+s} < \infty \} \\ & \mathbf{Proof.} \ (i) \ \text{First we suppose that } \mathbf{a} \ \mathbb{E} \ u_{1}^{2} \ , \text{then} \\ & \sum_{2 \leq i+j \leq \infty} |(i+j)^{(m+n)} \mathbf{v}_{ij} \mathbb{E}_{ij} \mathbf{a}_{ij} |^{r+s} < \infty \ . \\ & 2 \leq i+j \leq \infty \end{split}$$

$$\begin{aligned} & \text{Let } \mathbf{x} \ \mathbb{E} \ \lambda_{\infty}^{2} \ (\mathbf{M}, \mathbf{v}, \mathbb{E}, \ \Delta_{n}^{m} \) \\ & \sum_{2 \leq i+j \leq \infty} |\mathbf{a}_{ij} \mathbb{E}_{ij} \mathbf{x}_{ij} |^{r+s} = \sum_{2 \leq i+j \leq \infty} |(i+j)^{(m+n)} (\mathbf{v}_{ij})^{\mathbb{E} 1} \mathbb{E}_{ij} \ \mathbf{a}_{ij} |^{r+s} \ |(i+j)^{\mathbb{E}(m+n)} \mathbf{v}_{ij} \mathbf{x}_{ij} |^{r+s} \\ & \leq \sum_{2 \leq i+j \leq \infty} |(i+j)^{(m+n)} (\mathbf{v}_{ij})^{\mathbb{E} 2} \mathbf{a}_{ij} |^{r+s} < \infty \ , \text{ for each } \mathbf{x} \ \mathbb{E} 2 \ \lambda_{\infty}^{2} \ (\mathbf{M}, \mathbf{v}, \mathbb{E}, \ \Delta_{n}^{m} \) \end{aligned}$$

by using Lemma (3,5) (iii). Thus we have to show that

$$\mathbf{u}_{1}^{2} \subset [\lambda_{\infty}^{2} (\mathsf{M}, \mathsf{v}, \mathbb{P}, \Delta_{n}^{m})]^{\mathbb{P}}$$

$$(3.3)$$

Conversely let a $\mathbb{PP} u_1^2$. Then for each i,j, we have

$$\sum_{2 \leq i+j \leq \infty} |(i+j)^{m+n}(v_{ij})^{\mathbb{Z}^{1}} \mathbb{P}_{ij}a_{ij}|^{r+s} = \infty.$$

n

So we can find a sequence (n_i) of positive integer n_i with $n_1 < n_2 < \dots$, such that

$$\sum_{i+j\geq n_i+1}|(i+j)^{m+n}(v_{ij})^{\mathbb{2}1}\mathbb{D}_{ij}a_{ij}|^{r+s}>(i)^{r+s}$$

Now we define a sequence $x = (x_{ij})$ as

$$\mathbf{x}_{ij} = \begin{cases} 0 & (1 \le i + j \le n_1) \\ \frac{(i+j)^{(m+n)} \lambda_{ij}(v_{ij})^{-1}}{i} & (ni+1 < i + j \le n_{i+1}, i = 1, 2, 3) \end{cases}$$

Then it is easy to see that x = (x_{ij}) \square c²₀ (M, v, \square , Δ_n^m). But

$$\sum_{2\leq i+j\leq\infty} \left| a_{ij}\lambda_{ij}x_{ij} \right|^{r+s} = \sum_{i=1}^{\infty} \left\{ \sum_{i+j\geq n_i+1} \left| a_{ij}\lambda_{ij}x_{ij} \right|^{r+s} \right\} > \sum_{i=1}^{\infty} 1 = \infty.$$

Which contradicts that a $\mathbb{P} \; [\; c_0^2 \; (\mathsf{M},\mathsf{v},\mathbb{P},\; \Delta_n^m \;)]^{\mathbb{P}}.$ Hence

$$[c_0^2 (\mathsf{M}, \mathsf{v}, \mathbb{P}, \Delta_n^m)]^{\mathbb{P}} \subset \mathfrak{u}_1^2.$$
(3.4)

Since c_0^2 (M, v, \mathbb{P} , Δ_n^m)]^{\mathbb{P}} \subset c^2 (M, v, \mathbb{P} , Δ_n^m) $\subset \lambda_{\infty}^2$ (M, v, \mathbb{P} , Δ_n^m) implies [λ_{∞}^2 (M, v, \mathbb{P} , Δ_n^m) $)]^{\mathbb{P}} \subset [c^{2}(\mathsf{M},\mathsf{v},\mathbb{P},\Delta_{n}^{m})]^{\mathbb{P}} \subset [c_{0}^{2}(\mathsf{M},\mathsf{v},\mathbb{P},\Delta_{n}^{m})]^{\mathbb{P}}, (3.1) \text{ follows from (3.3) and (3.4)}.$

Proof is similar to proof of part (i). (ii)

Theorem (3.7). Let M be an Orlicz function. Then

 $[\overline{c}_{0}^{2} (\mathsf{M},\mathsf{v},\mathbb{P},\ \Delta_{n}^{m})]^{\mathbb{P}} = [\mathsf{c}^{2}(\mathsf{M},\mathsf{v},\mathbb{P},\ \Delta_{n}^{m})]^{\mathbb{P}} = [\lambda_{\infty}^{2} (\mathsf{M},\mathsf{v},\mathbb{P},\ \Delta_{n}^{m})] = u_{1}^{2}$ (i)

 ${}^{2}u_{1}^{n} = {}^{2}u_{2}$ (ii)

where

$$\begin{split} u_1^2 &= \{ \mathbf{a} = (\mathbf{a}_{ij}) : \sum_{2 \leq i+j \leq \infty} |(i+j)^{m+n} (\mathbf{v}_{ij})^{\mathbb{E}1} \mathbb{P}_{ij} \mathbf{a}_{ij}|^{r+s} < \infty \}, \\ u_2^2 &= \{ \mathbf{a} = (\mathbf{a}_{ij}) : \sup_{i=i} |(i+j)\mathbb{P}(m+n)\mathbf{v}_{ij}\mathbb{P}_{ij} \mathbf{a}_{ij}| < \infty \}. \end{split}$$

Proof. The proof is similar to that of theorem (3.6).

If we take $v_{ij} = \begin{vmatrix} 1, 1, \dots, 1 \\ 1, 1, \dots, 1 \\ 1, 1, \dots, 1 \\ 1, 1, \dots, 1 \end{vmatrix}$ I theorem (3.6) and Theorem (3.7). Then we obtain the

following Corollary :

Corollary (3.8). For X = c_0^2 , c^2 and λ_{∞}^2 . (i) $[X^2(M, \mathbb{P}, \Delta_n^m)]^{\mathbb{P}} = [X(M, \mathbb{P}, \Delta_n^m)]^{\mathbb{P}} = H_1^2$

$$[1] \qquad [\land ([v], @, \Delta_n)]^- - [\land ([v], @, \Delta_n)]^-]$$

(ii)
$${}^{2}H_{1}^{\eta} = {}^{2}H_{1}$$

where H_1^2 = {a = (a_{ij}) : $\sum_{2 \le i+j \le \infty} |(i+j)^{m+n} \mathbb{E}_{ij} a_{ij}|^{r+s} < \infty$ }

$$H_{2}^{2} = \{a = (a_{ij}) : \sup_{i, j} |(i+j)^{\mathbb{D}(m+n)}\mathbb{D}_{ij}a_{ij}| < \infty\}$$

If we take $v_{ij} = \begin{vmatrix} 1, 1, \dots, 1 \\ 1, 1, \dots, 1 \\ 1 \end{vmatrix}$ and $m, n = 0$ in the

e theorem (3.6) and Theorem (3.7), then we $\begin{bmatrix} 1, 1, \dots, 1 \\ 1, 1, \dots, 1 \end{bmatrix}$

obtain the following corollary :

Corollary (3.9). For X = c_0^2 , c^2 and λ_∞^2

(i)
$$[X^{2}(M)]^{\mathbb{P}} = [\overline{X}^{2}(M)]^{\mathbb{P}} = M_{1}$$

(ii) ${}^{2}M_{1}^{\eta} = {}^{2}M_{2}$

where
$$M_1^2 = \{a = (a_{ij}) : \sum_{2 \le i+j \le \infty} |\mathbb{D}_{ij}a_{ij}|^{r+s} < \infty\}$$

 $M_2^2 = \{a = (a_{ij}) : \sup_{i,j} |\mathbb{D}_{ij}a_{ij}| < \infty\}.$

Theorem (3.10). Let M be an Orlicz function. Then

(i)
$$[c_0^2 (\mathsf{M}, \mathsf{v}, \mathbb{P}, \Delta_n^m)]^{\mathbb{P}} = [c^2 (\mathsf{M}, \mathsf{v}, \mathbb{P}, \Delta_n^m)]^{\mathbb{P}} = [\lambda_\infty^2 (\mathsf{M}, \mathsf{v}, \mathbb{P}, \Delta_n^m)] = D_1^2,$$
 (3.5)

(ii)
$${}^{2}D_{1}^{\alpha} = {}^{2}D_{2}$$
 (3.6)
where $D_{1} = \{a = (a_{ij}) : \sum_{2 \le i+i \le \infty} |(i+j)^{\boxtimes (m+n)} (v_{ij})^{\boxtimes 1} \boxtimes_{ij} a_{ij}| < \infty\}$

$$D_2 = \{a = (a_{ij}) : \sup_{i,j} |(i+j)^{m+n} v_{ij} \mathbb{P}_{ij} a_{ij}| < \infty \}$$

Proof. (i) First we suppose that a $\mathbb{P} D_1^2$, then

$$\begin{split} \sum \sum_{2 \leq i+j \leq \infty} & |(i+j)^{\mathbb{E}(m+n)}(v_{ij}^{\mathbb{E}})^{\mathbb{E}1}\mathbb{E}_{ij}a_{ij}| < \infty \,. \\ 2 \leq i+j \leq \infty \end{split} \\ \begin{array}{l} \text{Let } x \boxtimes \lambda_{\infty}^{2} \left(\mathsf{M}, \mathsf{v}, \boxtimes, \Delta_{n}^{m}\right) \text{. Then} \\ & \sum \sum_{2 \leq i+j \leq \infty} |a_{ij}\mathbb{E}_{ij}x_{ij}| = \sum \sum_{2 \leq i+j \leq \infty} |(i+j)^{\mathbb{E}(m+n)}v_{ij}\mathbb{E}_{ij}a_{ij}| |(i+j)^{\mathbb{E}(m+n)}(v_{ij})^{\mathbb{E}1}\mathbb{E}_{ij}a_{ij}| \\ & 2 \leq i+j \leq \infty \end{split} \\ \begin{array}{l} \leq \sum \sum_{2 \leq i+j \leq \infty} (i+j)^{m+n} |(v_{ij})^{\mathbb{E}1}\mathbb{E}_{ij}a_{ij}| < \infty \\ & 2 \leq i+j \leq \infty \end{split}$$

for each x \boxdot λ^2_∞ (M, v, \boxdot , Δ^m_n), be Lemma (3.5) (iii). Thus we have to show that

$$D_1^2 \subset [\lambda_\infty^2 (\mathsf{M}, \mathsf{v}, \mathbb{P}, \Delta_n^m)]^{\mathbb{P}}.$$
(3.7)

Conversely let a $\ensuremath{\mathbb{Z}}\ D_1^2$. Then for some i,j, we have

$$\sum_{i=1}^{n}\sum_{j=1}^{\infty}\left|(i+j)^{\mathbb{P}(m+n)}(v_{ij})^{\mathbb{P}^{1}}\mathbb{P}_{ij}a_{ij}\right|=\infty.$$

 $2 \le i + j \le \infty$

So, we can find a sequence (n_i) of positive integer n_i with $n_1 < n_2 < ...$, such that

 $\sum \sum_{i=1}^{n} |(i+j)^{m+n}(v_{ij})^{\mathbb{P}_1} \mathbb{P}_{ij}a_{ij}| > i.$

 $i+j\ge n_i+1$

Now we define a sequence $x = (x_{ij})$ as

$$\mathbf{x}_{ij} = \begin{cases} 0 & 1 \leq i+j \leq n \\ \frac{\mathbf{v}_{ij}^{-1}(i+j)^{m+n}}{i}, & (n_i+1 < i+j \leq n_i+1: i=1, 2, ...) \end{cases}$$

Then it is easy to verify that x = (x_{ij}) $\mathbb P$ (M, v, $\mathbb P,\ \Delta_n^m$). But

 $\sum_{2 \leq i+j \leq \infty} |a_{ij} \mathbb{E}_{ij} x_{ij}| = \infty,$

which contradicts that a \mathbb{P} [c_0^2 (M, v, $\mathbb{P},\ \Delta_n^m$)]. Hence, we have

$$[c_0^2(\mathsf{M},\mathsf{v},\mathbb{P},\Delta_n^m)] \subset \mathbf{D}_1^2.$$
(3.8)

Since $[\lambda_{\infty}^{2}(M, v, \mathbb{P}, \Delta_{n}^{m})] \subset [c^{2}(M, v, I, \Delta_{n}^{m})] \subset [c_{0}^{2}(M, v, \mathbb{P}, \Delta_{n}^{m})]^{\mathbb{P}}$, so (3.5) follows from (3.7) and (3.8).

(ii) Proof is similar to proof of part (i).

Theorem (3.11). Let Me be an Orlicz function. Then

(i) $[\overline{c}_0^2 (\mathsf{M}, \mathsf{v}, \mathbb{P}, \lambda_\infty^2)]^{\mathbb{PP}} = [\overline{c}^2 (\mathsf{M}, \mathsf{v}, \mathbb{P}, \Delta_n^m)]^{\mathbb{PP}} = [\overline{\lambda}_\infty^2 (\mathsf{M}, \mathsf{v}, \mathbb{P}, \Delta_n^m)]^{\mathbb{PP}} = D_1^2,$ (ii) ${}^2D_1^{\alpha} = {}^2D_2$

where
$$D_1^2 = \{a = (a_{ij}) : \sum_{2 \le i+j \le \infty} |(i+j)^{m+n} (v_{ij})^{\mathbb{P}1} \mathbb{P}_{ij} a_{ij}| < \infty \}$$

$$D_2 = \{a = (a_{ij}) : \sup_{i, j} |(i+j)^{\mathbb{Z}(m+n)} v_{ij} a_{ij}| < \infty \}.$$

Proof. The proof is similar to that of theorem (3.10).

If we take $v_{ij} = \begin{vmatrix} 1, 1, \dots, 1 \\ \dots, 1, 1, \dots, 1 \end{vmatrix}$ and m, n = 0 in theorem (3.10) and theorem (3.11), then we obtain

following corollary :

Corollary (3.12). For X =
$$c_0^2$$
 , c^2 and λ_{∞}^2

(i)
$$[X^2(M)]^2 = [\overline{X}^2(M)]^2 = G_2$$

(ii)
$${}^{2}G_{1}^{\alpha} = {}^{2}G_{2}$$

where
$$G_1^2 = \{a = (a_{ij}) : \sum_{2 \le i+j \le \infty} |\mathbb{D}_{ij}a_{ij}| < \infty\} = \lambda_1^2$$
,
 $G_2^2 = \{a = (a_{ij}) : \sup_{i,j} |\mathbb{D}_{ij}a_{ij}| < \infty\} = \lambda_{\infty}^2$.

References

- 1. Ansari, A.A. and Chaudhary, V.K. : Generalized Köthe-Toeplitz duals of some difference sequence spaces, *Int. J. Contem. Math. Sci.*, 5(8), (2010), 373-380.
- 2. Kreyszing, E. : Introductory Functional Analysis with applications, John Wiley and Sons, New York (1978).
- 3. Malkowsky, E. and Parasar, S.D. : Matrix transformation in space of bounded and convergent difference sequences of order m, Analysis, 17(1997), 87-97.
- 4. Dutta, H. : Generalized difference sequence spaces defined by Orlicz functions and their Köthe-Toeplitz and Null duals, *Thai J. of Math.* 8(1) (2010), 11-19.
- 5. Dutta, H. : On Köthe-Toeplitz and Null fuals of some difference sequence spaces defined by Orlicz functions, *Euro. J. of Pure Appl. Math.*, 2(4) (2009), 554-563.
- 6. Kizmaz, H.: On certain sequence spaces, *Canadian Math. Bull.*, 24(1981), 169-176.
- 7. Maddox, I.J. : Elements of Functional Analysis, Marcel Dekker Inc., New York and Basel (1981).
- 8. Lindenstrauss and Tzafriri, L. : On Orlicz sequence spaces, *Israel J. Math.*, 10(1971), 379-390.
- 9. Mikail, Et. : On some topological properties of generalized difference sequence spaces, *Internat*. *J. Math. and Math. Sci.*, 24(11) (2000), 785-791.
- 10. Mikail, Et. and Colak, R. : On some generalized difference sequence spaces, *Soochow J. of Math.*, 21(4) (1995), 377-386.
- 11. Mikail, Et. and Esi, A. : On Köthe-Toeplitz duals of generalized difference sequence spaces, *Bull. Malaysian Math. Sc. Soc.*, 23(2) (2000), 25-32.
- 12. Chandra, P. and Tripathy, B.C. : On generalized Köthe-Toeplitz duals of some sequence spaces, *Indian J. pure appl. Math.*, 33(8) (2002), 1301-1306.
- 13. Kamthan, P.K. and Gupta, M. : Sequence spaces and series, Marcel Dekker Inc., New York, (1981).