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Abstract 

 In this paper we define some difference sequence spaces and its sub-spaces using an Orlicz 

function and find their generalized Köthe-Toeplitz duals ( -duals). 
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Introduction 

Throughout this paper ,  , 1 , 1c  and 0c  denotes the spaces of all, bounded, absolutely 

summable, convergent and null sequences x = (xk) with complex terms respectively. The notion of 

difference sequence space was introduced by Kizmaz [6], who studied the difference sequence 

spaces  ( ), c( ) and 0c ( ). The notion was further generalized by Et. M. and Colak [10] by 

introducing the spaces  ( m ), c( m ) and 0c ( m ).  

Let m be a non-negative integers then for Z a given sequence space, we have 

  Z( m ) = {x = (xk)  : ( m

kx
 )  Z} 

where 

  m
x = ( m xk) = ( 1m xk – ( 1m 1k

1m x 
 )) and k

0 x = (xk) for all k N, which 

is equivalent to the following binomial representation 

  m xk 
= 




m

0j
jk

j x)1( . 

After then Et. M. and Esi. A. [11] introduced the spaces  ( m
v ), c( m

v ) and 0c ( m
v ). 

Let v = (vk) be any fixed sequence of non-zero complex number and m be a positive integer 

then for Z a given sequence space, we have  

Z( m
v ) = {x = (xk)  : ( m vkxk)  Z} 

where m
v x = ( m vkxk) = ( 1m vkxk  1m vk+1xk+1), for all k  N and so that 

m
v xk = 




m

0q

j)1( 






j
m vk+jxk+j.  

Taking vk = (1, 1, …), we get the spaces  ( m ), c( m ) and 0c ( m ) introduced and 

studied by Et. and Colak [10]. 
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An Orlicz function is a function M :  ,0   ,0 , which is continuous, non-decreasing 

and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x)   as x   . 

An Orlicz function M is said to be 2 –condition for all values of u, if these exists a constant 

K>0, such that 

M(2u) < KM(u),     where u 0. 

The 2 –condition is equivalent to M(u)   KM(u), for all values of u and for   > 1. 

An Orlicz function M can always be represented in the following integral form : 

M(x) = 
x

0

dt)t(p  

where p, known as Kernal of M, is right  differentiable for t   0, p(0) = 0, p(t) > 0 for t > 0, p is non-

decreasing and p(t)    as t  .  

Consider the Kernel p(t) associated with the Orlicz function M(t), and let 

Q(s) = sup{t : p(t)   s} 

The q possesses the same properties as the function p. Suppose now 

(x) = 
x

0

q(s)ds. 

Then  is an Orlicz function. The functions M and  are called mutually complementary  

Orlicz functions. 

Now we state the following results which can be found in [8]. 

Let M and  are mutually complementary Orlicz functions. Then we have (Young’s 

inequality) 

(i) For x, y   0, xy   M(x) + (y) 

Also, we have  

(ii) M( x) < M(x) for all x   0 and  with 0 <  < 1.  

Lindestrauss and Tzafriri [8] used the Orlicz function and introduced the sequence space 

M  as follows : 

M  = { x = (xk) w : 












1k

k |x|
.M  <   for some  > 0} 

They proved that M  is a Banach space normed by 

||xk|| = inf{  > 0 : 












1k

k |x|
.M    1}. 

A norm ||.|| on a vector space X is said to be equivalent to a norm ||.||0 on X if there are 

positive number A and B such that for all x  X, we have 

A||x||0   ||x||   B||x||0. 

This concept is motivated be the fact that equivalent norm on X define the same topology 

for X. 

An isomorphism of a normed space X onto a normed space Y is a bijective  linear operator 

T : X Y which preserves the norm, i.e. for all x X, 

||Tx|| = ||x||.         (Hence T is isometric) 

X is then called isomorphic with Y, X and Y are called isomorphic normed spaces. 

 

2. Definitions and Notations 

 

Let m, n be a positive integer. The we can have the following sequence spaces for an Orlicz 

function M as 
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2
0

c (M, v, , m
n ) = {x = (xij) : 





















|xv|
Mlim

ijijij
m
n

ji
= 0, for some  > 0} 

c2(M, v, , m
n ) = {x = (xij) : 

 ji
lim  M 

















 1ijijij
m
n L|xv|

 = 0, for some complex number L and 

 > 0}, 

2
 (M, v, , m

n ) = {x = (xij) : 
j,i

sup M 
















 |xv| ijijij
m
n

 < , for some  > 0}, 

where m
n vijxij=

1m
1n



 vijxij 
1m vi+1, j+1xi+1, j+1, 

m
n vijxij= 





nmji2

'j'i)1(  'jj,'ii'jj,'ii xv   

It is obvious that 

2
0

c (M, v, , m
n ) c2(M, v, , m ) 2

 (M, v, , m
n ).        (2.1) 

Several authors have studied different algebraic and topological properties of such spaces. 

In this paper our main aim is to determine generalized Köthe-Toeplitz and Köthe-Toeplitz duals of 

such spaces. 

Throughout the paper X will denote one of the sequence spaces c0, c and  . The sequence 

spaces X(M, v, , m
n ) are Banach spaces normed by 

m
n

||x||


 = 
nmk2 





|xv| kk   + inf{  > 0 : 
j,i

sup M
















 |xv| ijijij
m
n

 1}L      (2.2) 

Now, we take 

m
n vij ijxij = 

nmji2 


'j'i)1( 

'jj,'ii'jn,'imv

'jj,'iix
'j

n
'i

m 













  

It is trivial ( m
n vijxij)  X(m) if anf only if ( m

n vijxij) X(M). Now for                x  X(M, v, m
n

), we define 

)m(
n

||x||


 = inf{  > 0 : 1
|xv|

Msup
ijijij

m
n

j,i



















}. 

It can be shown that X(M, v, , m
n ) is a BK-space under the norm m

n
||x||


 and the norms m
n

||x||


and m
n

||x||


 are equivalent. Obviously m
n  : X(M, v, , )m( ) X(M) denoted by 

)m(
)n(

 (x)=y=( m
n

vij ijxij), is isometric isomorphism. Hence 2
0

c (M, v, , m
n ), c2(M, v, , m

n ) and 2
 (M) are 

isometrically isomorphic to 2
0

c (M), c2(M) and        2
 (M) respectively. From abstract point of view 

X(M, v, , m
n ) is identical to X(M). 

Now we define the spaces 2
0

c (M, v, , m
n ) is subspace of 2

0
c  (M, v, , m

n ) consisting of 

those x in 2
0

c (M, v, , m
n ) such that 

 ji
lim M

 
d

|xv| ijijij
m
n 

 = 0 for each d > 0. 
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Similarly we define 2c (M, v, , m
n ) and 2

 (M, v, , m
n ) as subspace of  2c (M, v, , m

n

) and 2
 (M, v, , m

n ) respectively. The topology of X (M, v, , m
n ) is the one it inherits from 

m
n

||.||


.  

It is obvious that  

2
0

c (M, v, , m
n )   2c (M, v, , m

n )   2
 (m, v, , m

n ). 

Also as above we can show that X (M, v, , m
n ) are isometrically isomorphic to X (M). 

Moreover X2(M, v, , m
n )   X2(M, v, , 1m

1n



 ) and 2X (M, v, , m
n )   X2(M, v, , 1m

1n





) which can be shown by repeated application of the following inequality 

M


















2

|xv| ijijij
m
n

   
2

1
M

















 


|xv| ijijij
1m
1n  + 

2

M

















 



|xv| 1j,1i1j,1i1j,1i
1m
1n . 

 

3. Generalized Köthe-Toeplitz Duals 

In this section our main aim is to determine -dual and -dual of the sequence spaces 2
0

c

(M, v, , m
n ), c2(M, v, , m

n ), 2
 (M, v, , m

n ), 2
0

c (M, v, , m
n ),        2c (M, v, , m ) and 2



(M, v, , m
n ). 

Definition (3.1). Let E be a sequence space and r  1. Then the -dual of E is defined as 

E  = {a = (ak) : 


1k
|akrk|r <  , for all x = (xk)  E}. 

If we take r = 1, then we have Köthe-Toeplitz duals of E, i.e., 

E  = {a = (ak) : 


1k
|akrk| <  , for all x = (xk) E}. 

If E   F, then Fz   Ez for z = , . 

Lemma (3.2). ([3]). Let m be a positive integer. Then there exists positive constants c1 and 

c2 such that 

c1(i+j)m+n  






 





 

j
jm

i
im

  c2(i+j)m+n,       i+j = 0, 1, 2, ... 

Lemma (3.3). x 2
 (M, v, , m

n ) implies that
j,i

sup M
















 


 |xv)ji(| ijijij
1m
1n

1

< , for some  > 

0. 

Proof. Let x 2
 (M, v, , m

n ), then 

j,i

sup M
















 |xv| ijijij
m
n

<  , for some  > 0. 

Then there exists a U > 0, such that 

M
















 |xv| ijijij
m
n

 < U, for all i,j  N. 

Taking  = (i+j) , i,j > 1 being fixed number, we have 
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M
















 






|xvxv| 1j,1i11j,1i1j,1i
1m
1n111111

1m
1n  = M































)ji(

xv 'j'i'j'i'j'i
m
n

ji'j'i2  

M































)ji(

xv 'j'i'j'i'j'i
m
n

ji'j'i2   


ji

1


M



























 |xV|
.....

|xV||xV| ijijij
m
n222222

m
n111111

m
n  


ji

1


(U + U + …+ U) = O(i,j) 

Now the result follows from the following inequality using the convexity of M 

|xv| 1j,1i1j,1i1j,1i
1m
1n 



  111111
1m
1n

xv|  
 | 

+ |xvxv| 1j,1i11j,1i1j,1i
1m
1n111111

1m
1n 







 . 

Lemma (3.4).
j,i

sup M


  |)xv)ji((| ijijij
)nm(

< implies
j,i

sup M


  |)xv)ji((| ijijij
)1nm(

< , for all n  

N and some  > 0. 

Proof. Proof follows from Lemma (3.3). 

Lemma (3.5). (i) 
j,i

sup M


 


 |xv)ji(| ijijij
1m
1n

1

<  implies 
j,i

sup M



  |)xv)ji((| ijijij
)nm(

<  for some  > 0. 

(iii) x 2
 ( v , m

n ) implies 
j,i

sup |xv)ji(| ijijij
1m
1n

)nm(  


 < . 

 

Proof. (i) Proof follows from Lemma (3.4). 

(ii) Combining the Lemma (3.4) and part (i). 

(iii) Proof follows from part (i). 

 

Remark 1. Similar results as in Lemma (3.5) hold for 2
 (M, v, , m

n ) also, where the 

statement “for some  > 0”. 

 

Theorem (3.6). Let M be an Orlicz function. Then 

(i) [ 2
0

c (M, v, , m
n )]=[c2(M, v, , m

n )] =[ 2
 (M, v, , m

n )]=u1     (3.1) 

(ii) 

1

2 u  = 2
2 u .                 (3.2) 

where 2
1

u  = {a = (aij) : 




ji2

|(i+j)m+n vij ijaij |r+s< } 
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            2
2

u  = {a = (aij) : 
j,i

sup |(i+j) (m+n)vij ijaij|r+s < } 

Proof. (i) First we suppose that a  2
1

u , then 





ji2

|(i+j)(m + n)vij ijaij|r+s <  . 

Let x  2
 (M, v, , m

n ) 





ji2

|aij ijxij|r+s = 




ji2

|(i+j)(m + n)(vij) 1
ij aij|r+s |(i+j) (m+n)vijxij|r+s 

                  




ji2

|(i+j)(m+n)(vij) aij|r+s< , for each x 2
 (M, v, , m

n ) 

by using Lemma (3,5) (iii). Thus we have to show that 

2
1

u  [ 2
 (M, v, , m

n )]                                         (3.3) 

Conversely let a 2
1

u . Then for each i,j, we have 





ji2

|(i+j)m+n(vij) 1
ijaij|r+s =  . 

So we can find a sequence (ni) of positive integer ni with n1<n2<….., such that   


 1inji

|(i+j)m+n(vij) 1
ijaij|r+s > (i)r+s  

Now we define a sequence x = (xij) as 

xij = {
)1nji1(0

....)3,2,1i,1inji1ni(
i

1)ijv(ij
)nm()ji(






  

Then it is easy to see that x = (xij)  
2
0c (M, v, , m

n ). But 



 

ji2

sr
ijijij |xa|   = 



1i
}|xa|{ sr

ijijij
1inji





   > 


1i
1 =  . 

Which contradicts that a  [
2
0c (M, v, , m

n )] . Hence 

[
2
0c (M, v, , m

n )]  2
1

u .              (3.4) 

Since 
2
0c (M, v, , m

n )]  c2(M, v, , m
n ) 2

 (M, v, , m
n ) implies [ 2

  (M, v, , m
n

)]  [c2(M, v, , m
n )]  [

2
0c (M, v, , m

n )] , (3.1) follows from (3.3) and (3.4). 

(ii) Proof is similar to proof of part (i). 

 

Theorem (3.7). Let M be an Orlicz function. Then 

(i) [
2
0c (M, v, , m

n )]  = [c2(M, v, , m
n )]  = [ 2

 (M, v, , m
n )] = 2

1u  

(ii) n
1

2 u  = 2
2 u , 

where   2
1u  = {a = (aij) :



 

ji2

|(i+j)m+n(vij) 1
ijaij|r+s < }, 

2
2u  = {a = (aij) : 

j,i

sup |(i+j) (m+n)vij ijaij| <  }.  

Proof. The proof is similar to that of theorem (3.6). 
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If we take vij = 

1.........,1,1
.................

1.........,1,1

1.........,1,1

1.........,1,1

 I theorem (3.6) and Theorem (3.7). Then we obtain the 

following Corollary : 

Corollary (3.8). For X = 
2
0c , c2 and 2

 .  

(i) [X2(M, , m
n )]  = [X(M, , m

n )]  = 2
1H  

(ii) 

1

2 H  = 1
2 H  

where 2
1H  = {a = (aij) : 



 

ji2

|(i+j)m+n
ijaij|r+s < } 

2
2H  = {a = (aij) : 

j,i

sup |(i+j) (m+n)
ijaij| < }  

If we take vij =

1.........,1,1
.................

1.........,1,1

1.........,1,1

1.........,1,1

 and m,n = 0 in the theorem (3.6) and Theorem (3.7), then we 

obtain the following corollary : 

Corollary (3.9). For X = 
2
0c , c2 and 2

   

(i) [X2(M)]  = [ 2X (M)]  = M1  

(ii) 

1

2 M  = 2
2 M  

where 2
1M  = {a = (aij) : 



 

ji2

| ijaij|r+s < } 

2
2M  = {a = (aij) : 

j,i

sup | ijaij| < }. 

Theorem (3.10). Let M be an Orlicz function. Then 

(i) [
2
0c (M, v, , m

n )]  = [c2(M, v, , m
n )]  = [ 2

 (M, v, , m
n )] = 2

1D ,    (3.5) 

(ii) 
1

2 D  = 2
2 D                   (3.6) 

where D1 = {a = (aij) : 


 

ji2

|(i+j) (m+n)(vij) 1
ijaij| < } 

D2 =  {a = (aij) : 
j,i

sup |(i+j)m+nvij ijaij| < } 

Proof. (i) First we suppose that a 2
1D , then 



 

ji2

|(i+j) (m+n)(vij ) 1
ijaij|< . 

Let x 2
 (M, v, , m

n ). Then 



 

ji2

|aij ijxij| = 


 

ji2

|(i+j) (m+n)vij ijaij| |(i+j) (m+n)(vij) 1
ijaij| 

    


 

ji2

(i+j)m+n|(vij) 1
ijaij| <  

for each x  2
 (M, v, , m

n ), be Lemma (3.5) (iii). Thus we have to show that 
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2
1D  [ 2

 (M, v, , m
n )] .               (3.7) 

Conversely let a  2
1D . Then for some i,j, we have 



 

ji2

|(i+j) (m+n)(vij ) 1
ijaij| = . 

So, we can find a sequence (ni) of positive integer ni with n1<n2 <…, such that 

1inji 

  |(i+j)m+n(vij) 1
ijaij| > i. 

Now we define a sequence x = (xij) as 

xij = 















...),2,1i:1nji1n(,
i

)ji(v

nji10

ii

nm1
ij

  

Then it is easy to verify that x = (xij)  (M, v, , m
n ). But 



 

ji2

|aij ijxij| =  , 

which contradicts that a  [
2
0c (M, v, , m

n )]. Hence, we have 

[
2
0c (M, v, , m

n )] 2
1D .                         (3.8) 

Since [ 2
 (M, v, , m

n )] [c2(M, v, l, m
n )] [

2
0c (M, v, , m

n )] , so (3.5) follows from 

(3.7) and (3.8). 

(ii)     Proof is similar to proof of part (i). 

 

Theorem (3.11). Let Me be an Orlicz function. Then 

(i) [
2
0c (M, v, , 2

 )] = [ 2c (M, v, , m
n )] =[ 2

 (M, v, , m
n )] = 2

1D , 

(ii) 
1

2 D  = 2
2 D  

where  2
1D  = {a = (aij) : 



 

ji2

|(i+j)m+n(vij) 1
ijaij| < } 

D2 = {a = (aij) : 
j,i

sup |(i+j) (m+n)vijaij| <  }. 

Proof. The proof is similar to that of theorem (3.10). 

If we take vij = 

1.........,1,1

................

1.........,1,1
 and m,n = 0 in theorem (3.10) and theorem (3.11), then we obtain 

following corollary : 

Corollary (3.12). For X = 
2
0c , c2 and 2

   

(i) [X2(M)]  = [ 2X (M)]  = G1 

(ii) 
1

2 G  = 2
2 G  

where 2
1G  = {a = (aij) : 



 

ji2

| ijaij| < } = 2
1 , 

2
2G  = {a = (aij) : 

j,i

sup | ijaij| < } = 2
 . 
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